Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy
نویسندگان
چکیده
In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied.
منابع مشابه
MCPD fatty acid esters in vegetable oils: formation, analysis and toxicology
3-monochoropropane-1, 2-diol (3-MCPD) and 2-monochloropropane-1,3-diol (2-MCPD) and glycidol esters (GE) have been known as food contaminants. These compounds are formed during high-temperature process of different food products such as coffee, edible oils, infant formula, potato based products, bakery products, malt, cooked meats, soy sauces and pickles. In vegetable oils, these compounds are ...
متن کاملA Comparative Study on the use of Butyl Esters of Soyabean and Sunflower Oils as Biodiesel Fuel for Compression Ignition Engine
To study the feasibility of using two edible plant oils as diesel substitute a comparative study was made. Oils were exacted from the seeds of soyabean (Glycine Max, Family: Leguminoceae) and sunflower(Helianthus annuus, Family: Asteraceae/Compositeae). Oils were esterified (butyl esters) before blending with pure diesel in the ratio of 10:90, 15:85, 20:80, and 25:75 by volume. Pure diesel was ...
متن کاملBiodiesel production from vegetable oils by supercritical methanol
Transesterification of vegetable oils in supercritical methanol are carried out without using any catalyst. Methyl esters of vegetable oils or biodiesels have several outstanding advantages among other new-renewable and clean engine fuel alternatives and can be used in any diesel engine without modification. The most important variables affecting the methyl ester yield during the transesterific...
متن کاملComparative study of high-linoleic acid vegetable oils for the production of conjugated linoleic acid.
Conjugated linoleic acid (CLA) is found in small quantities in dairy and beef products. Obtaining optimum dietary CLA levels from these sources requires an increased intake of saturated fat. A 20% CLA soy oil was produced by UV photoisomerization of soy oil linoleic acid (LA), which is naturally low in saturated fat, but no other high-LA vegetable oils have been studied for their potential as C...
متن کاملBiodegradation Behavior of Some Vegetable Oil-based Polymers
The potential biodegradability of several vegetable oil-based polymers was assessed by respirometry in soil for 60–100 days at temperatures of 30–58 C. Films of soybean oil and linseed oil which were oxidatively polymerized (Co catalyst) on a kraft paper support were 90%–100% mineralized to CO2 after 70 days at 30 C. Mineralization of polymerized tung oil to CO2 was much slower than soy or lins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016